ow hemoglobin, gallstones,
pulmonary vasculature, pneumonia, splenic sequestration crisis, severe infection resulting from impaired splenic function, renal dysfunction, chest pain syndrome, enlarged heart, osteomyelitis, retinopathy, blindness, transfusion-related illness due to low hemoglobin, gallstones, chronic pain, enlarged liver, bloodstream infection and aplastic crisis.
Patient Teaching
Because there is no cure for SCA, supportive treatment is the only therapy available. I would educate the patient to refrain from flying at high altitudes, prevent infection such as proper handwashing techniques and receiving necessary vaccinations, maintain hydration, and avoid extreme temperature fluctuations as these actions can help prevent a sickle cell crisis. I would stress to the patient to adhere to his or her prescribed medications as indicated. In terms of diet, I would advise the individual with SCA to consume a diet high in calories with special attention to protein, minerals such as zinc, copper, folate, and vitamins A, C, E all while spaced out into smaller, frequent meals.
Post 2
Sickle cell disease is a group of disorders of which sickle cell anemia is the most severe. Sickle cell anemia is an autosomal recessive disorder that is caused due to a genetic mutation where the amino acid valine replaces glutamic acid to cause an abnormal form of hemoglobin within the red blood cells. “The resulting substitution of the hydrophilic amino acid glutamic acid at the sixth position by the hydrophobic amino acid valine leads to the production of hemoglobin S (HbS)” (Wun & Brunson, 2016, p. 640). When deoxygenation and dehydration occur, the red blood cell changes its shape into an elongated crescent (sickle) shape which can lead to a variety of consequences (McCance et al., 2013). Vascular occlusion, organ infarction, and pain are among the complications caused by this disorder. According to McCance et al. (2013) “sickling is an occasional, intermittent phenomenon” (p. 1065) and can be triggered by hypoxemia, a decreased pH, an increase in plasma osmolality, a decrease in plasma volume, or a low temperature. If the sickled red blood cells are not reoxygenated and rehydrated appropriately, irreversible plasma membrane damage may occur which leads to irreversible sickling.
Clinical manifestations of sickle cell anemia include the typical signs of hemolytic anemia – “pallor, fatigue, jaundice, and irritability” (McCance et al., 2013, p. 1066) and are sometimes accompanied by an acute manifestation or crises. There are four types of crises that can be triggered by extensive sickling: vaso-occlusive crisis, aplastic crisis, sequestration crisis, or hyperhemolytic crisis (McCance et al., 2013). Vaso-occlusive crisis is when sickling occurs in microcirculation and obstructs blood flow, causing vasospasm, and can lead to painful swelling of the hands and feet, priapism, severe abdominal pain, and even stroke (McCance et al., 2013). Aplastic crisis typically occurs as a result of a viral infection. Parvovirus B19 is a virus that almost always causes a person with sickle cell anemia to go into an aplastic crisis and causes the production of red blood cells to be shut down temporarily, which leads to a severe hemoglobin drop. Sequestration crisis occurs when blood becomes pooled in the liver/spleen and can lead to death if not treated with hydration and a blood transfusion. Treatment for recurrences of this crisis is the removal of the spleen after the age of 5. Hyperhemolytic crisis is characterized by red blood cell destruction at an accelerated rate, and symptoms include anemia, jaundice, and reticulocytosis.